
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 8, AUGUST 2024 9103

A Vehicle Matching Algorithm by Maximizing
Travel Time Probability Based on Automatic

License Plate Recognition Data
Chunguang He , Dianhai Wang , Zhengyi Cai , Member, IEEE, Jiaqi Zeng , and Fengjie Fu

Abstract— Vehicle re-identification aims to match and identify
the same vehicle crossing multiple surveillance cameras and
obtain traffic information such as travel time. The Automatic
License Plate Recognition (ALPR) data are widely employed in
urban surveillance. However, vehicle re-identification based on
ALPR data is challenging due to license plate recognition errors
and unrecognized issues. This paper proposes a vehicle matching
algorithm designed to maximize the travel time probability
using ALPR data, while accounting for recognition errors and
unrecognized issues. The proposed algorithm consists of several
modules, including the estimation of travel time distribution,
computation of travel time probability, calculation of travel time
confidence intervals and matching time window size, restricted
fuzzy matching, and vehicle matching optimization. To evaluate
the effectiveness of the proposed algorithm across varying lighting
and weather conditions, ALPR data was collected from a survey
road in four scenarios: sunny day, sunny night, rainy day, and
rainy night. The results indicate that when compared to a sunny
day scenario, severe lighting and adverse weather conditions
lead to decreased matching accuracy and increased matching
accuracy errors for all methods evaluated. However, our proposed
model outperforms benchmark algorithms in both scenarios,
demonstrating its superior performance.

Index Terms— Vehicle reidentification, vehicle matching
algorithm, automatic license plate recognition (ALPR) data,
travel time distribution, travel time probability.

I. INTRODUCTION

THI Automatic License Plate Recognition (ALPR)
data contains plentiful information. In recent years,
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researchers have widely applied ALPR data in traffic infor-
mation mining by matching the upstream and downstream
ALPR data, such as traffic demand estimation [1], [2], travel
time estimation [3], [4], speed estimation [5], link dynamic
vehicle count [6], queue length estimation [7], [8], [9],
and route reconstruction [10]. The ALPR data is obtained
using optical character recognition (OCR) within the captured
image. In some situations, the ALPR data may suffer the
recognized errors or unrecognized due to the recognition
environment, leading to the upstream and downstream license
plates unmatched in practice. Therefore, how to match license
plate recognition errors and unrecognized vehicles is the key
to data application.

To address the issue of vehicles going unmatched due
to recognition errors and other issues, we propose a
vehicle-matching algorithm that aims to maximize the proba-
bility of travel time. This algorithm will help in re-identifying
vehicles in cases of recognition errors and other unrecognized
issues in the ALPR data. The main steps of the algorithm
are: travel time extract and preprocessing module; travel time
distribution constructing module; travel time probability, travel
time confidence interval, and matching window size calcu-
lating module; restricted fuzzy matching module. The ALPR
data of two consecutive intersections of a road in Hangzhou,
China covering peak and off-peak hours are used to test the
proposed algorithm. We investigated the high-definition video
data of the experimental road section at the same time and used
it for manual identification to verify the proposed matching
algorithm.

Different from the approach presented by Zhan, et al. [7],
we estimate travel time based on the ALPR data and apply
the optimization model to calculate the vehicle matching
result that maximizes the travel time probability. The proposed
method does not require additional data and traffic flow rate
assumptions. There are three main contributions:

1) For the first time, the entire sample data of the road
section was obtained, and the actual recognition accuracy
of the ALPR equipment was calculated and analyzed.

2) The dynamic travel time distribution of the road section
was estimated based on the data-driven approach, and the
travel time probability was automatically calculated from
the travel time distribution.

3) A matching algorithm by maximizing the travel time
probability was proposed to match the unmatched
upstream and downstream vehicles, which fully employs
the travel time information based on the ALPR data.
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The rest of the paper is organized as follows: Section II
reviews the literature on data and methods for vehicle rei-
dentification. Section III define the problem, expounds on the
matching principle by maximizing the travel time probabil-
ity, and proposes the vehicle matching algorithm framework.
Section IV introduces the approach of data survey and ana-
lyzes the survey data quality. The proposed vehicle matching
algorithm is verified based on the survey data, and the per-
formance of different matching algorithms are compared and
analyzed. Section V summarizes the paper.

II. LITERATURE REVIEW

In the past few decades, many kinds of technologies are used
for vehicle reidentification, such as conventional inductive loop
detectors, automatic vehicle identification (AVI), and video
image processing techniques.

The inductive loop detectors are the traditional and most
commonly used traffic collection devices. Some studies apply
the upstream and downstream loop data to vehicle match-
ing, extra for travel time, and other traffic information. The
approaches of vehicle matching based on loop data don’t
need additional equipment on the highway and expressway.
However, the matching accuracy of loop data is low. For
example, Coifman and Cassidy [11] proposed a vehicle rei-
dentification method based on loop data using upstream and
downstream dual-loop detectors on the freeway. Coifman and
Krishnamurthy [12] improved the vehicle matching approach
by applying the distinct information of the long vehicles.

Furthermore, the traffic loop detectors can extract the
vehicle signature for vehicle reidentification. Oh, et al. [14]
presented a vehicle reidentification model using the inductive
vehicle signature based on the vehicle matching algorithm pro-
posed by [13]. Then, the road segment speeds are extracted and
the level of service in real-time is evaluated by re-identifying
vehicles passing detectors on expressway. Then Oh, et al. [15]
proposed a vehicle matching algorithm using the heteroge-
neous detection in the urban signalized section. Jeng et al. [16]
applied the inductive loop vehicle signature information for
vehicles matching on the upstream and downstream freeway.

The wireless magnetic sensors are also convenient for
vehicle reidentification by extracting the vehicle magnetic
signatures [17], [18]. Kwong, et al. [19], [20] proposed a
vehicle matching algorithm based on the statistical model of
vehicle signatures. The wireless magnetic sensors are utilized
to collect vehicle signatures and the exact time. The algorithm
achieves 75% accuracy, and the link vehicle count and the
travel time distribution are stably estimated.

The AVI data have unique identification information and are
convenient for vehicle re-identification. Dion and Rakha [21]
presented an adaptive filtering algorithm to forecast the aver-
age travel time of the freeways and signalize links using
low levels of market penetration AVI data. Li and Rose
predicted the travel time range of the motorways employing
the tollway AVI data based on vehicle identification [22].
However, AVI technology needs to install many new detectors
in the road network [23], and the low penetration rate limits
the application.

Vehicle reidentification based on computer vision methods,
especially deep feature based methods become more and more
popular [24]. The challenges of computer vision-based meth-
ods are the images of the same vehicle under different cameras
have a various viewpoint, pose, illumination, and profile.
Besides, different vehicles with the same type and color are
very difficult to distinguish [25]. Some studies adopted more
tiny features for vehicle reidentification, such as windows,
lights, and pasted marks on the windshield [26]. Spatiotem-
poral information can further help vehicles re-identify [27],
[28]. However, the deep network will be more complex and
bloated and most vision-based methods seldom consider the
spatiotemporal information of the vehicle. Moreover, fewer
datasets have spatiotemporal information, which limits the
development of methods [29].

The ALPR data have the characteristics of wide equipment
in the road network, generous sampling rate, and high
recognition accuracy. Given the excellent characteristics of
ALPR data, many studies used the ALPR data for traffic
information mining and modeling. Wang, et al. [30] propose a
deep learning framework to model the dynamic characteristics
of lane-level traffic flow as complex networks and uses spatial
temporal graphs to predict network-scale traffic volumes,
which outperforms various advanced deep learning models
on two ALPR datasets.Yao, et al. [31] use ALPR data
from Hangzhou, China to extract nine features reflecting
commuting behavior. An, et al. [32] propose a method to
estimate a lane-based traffic arrival pattern using ALPR data
collected at upstream and downstream intersections. Zeng
and Tang [33] propose a data-driven approach that combines
ALPR data with taxi GPS trajectory data to estimate traffic
flow in large road networks.

Different traffic parameters have different accuracy and
rate requirements for license plate matching algorithms. For
example, travel time and speed estimation don’t require high
sampling and matching rates. While traffic demand estimation,
queue length estimation, and route reconstruction require
higher matching rates. However, researchers have seldom
conducted more in-depth studies on issues of vehicle matching
in the case of recognition errors or unrecognized. Fu studied
the recognition accuracy of ALPR and assumed the ALPR
sensors achieved 95% of the recognition accuracy [34]. The
recognition accuracy is affected by many factors and the
actual recognition accuracy changes in different situations.
Zhan et al. [7] applied the ALPR data to analyze the matched
and unmatched information and proposed an interpolation
approach based on the Gaussian process. The proposed
methodology estimated link vehicle count and queue length
by reconstructing the equivalent cumulative arrival-departure
curve. Mo, et al. [2] proposed a Bayesian path reconstruction
model to restore the missing information caused by the recog-
nition error by utilizing match information of ALPR data.

III. METHODOLOGICAL FRAMEWORK

A. Problem Description

The ALPR systems are widely deployed in major urban cen-
ters in China. These systems are primarily installed to monitor
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Fig. 1. Illustration of Time-space diagram of vehicle matching based on
upstream and downstream ALPR data. The blue dots indicate that the vehicle
is accurately recognized both upstream and downstream and can achieve
precise matching. Orange dots indicate that some characters of the vehicle
license plate are recognized incorrectly in the upstream or downstream and can
be matched using the fuzzy matching method. Gray dots indicate unmatched
vehicles.

and record traffic violations, including red light violations.
When the vehicle passes the stop line, the systems will take a
picture and record the license plate number, timestamp, lane
location, etc. If the vehicle license plates from the upstream
intersection and downstream stop line can be identified cor-
rectly, they can be matched. Although mis-recognition or
non-recognition often occurs, the timestamp and lane position
can still be accurately recorded.

The typical license plate recognition data can be divided
into three scenarios according to weather mis-recognition
or non-recognition occurs in the upstream and downstream
intersections: first, the license plates are correctly identified at
upstream and downstream intersections and can be matched by
the precise matching algorithm, as indicated by the blue dots in
Fig. 1. Second, license plate recognition errors only occur on
individual characters and can be matched by restricted fuzzy
matching, as shown by the orange dots in Fig. 1. Third, the
license plate cannot be matched by the characters when most
of the characters on the license plate are incorrectly recognized
or unrecognized, as shown by the gray circles in Fig. 1. For
example, if two identical unmatched vehicles are detected at
upstream and downstream intersections, respectively. Then,
there may be two matching results. The travel time matrix
of the two matching results can be obtained by calculating the
timestamps differences between the downstream vehicles and
the upstream vehicles. We need to find out which one is the
correct match result by using the possible travel time matrix
information. In Fig. 1, where hu and hd are the matching time
windows of the upstream and downstream, tu

j is the timestamp
of the j th vehicle detected upstream, td

i is the timestamp of
i th vehicle detected downstream, τi j means the possible travel
time of two vehicles, T represents the travel time matrix.

B. Modeling Principles

Supposing there are n vehicles go through the downstream
intersection from upstream, and these vehicles need to be
matched, then there will be n! matching results. The maximum
probability matching result is obtained by calculating the
probability of matching travel time as shown in Fig. 2, pi j
represents the travel time probability of the j th upstream
vehicle matching with the i th downstream vehicle, P rep-
resents the travel time probability matrix. xi j represents the
matching variable, and X represents the matching variables

Fig. 2. Illustration of the travel time probability matrix and matching
variables matrix during the matching process for two unmatched vehicles.

matrix. xi j = 1 if the j th upstream vehicle matches with the
i th downstream vehicle. xi j = 0 if they are don’t match each
other.

When there are n upstream vehicles and m downstream
vehicles that need to match, the objective function is shown
as follows to maximize the travel time probability:

max z =

m∏
i

n∏
j

p
xi j
i j (1)

where z is the travel time probability product of matching
vehicles, pi j is the travel time probability, and xi j represents
the matching variable.

The objective function is nonlinear, so we take the logarithm

of the objective function, then log z =

m∑
i

n∑
j

xi j log pi j . Let

log pi j = ai j , and log z = z′, thus the objective function turns

to max z′
=

m∑
i

n∑
j

xi j ai j .

When m > n > 0, the downstream vehicles are more than
upstream, we add m × (m − n) columns virtual vehicles and
make the corresponding travel time probability equal to a small
positive number greater than zero. Hence, its logarithm is a
massive negative value log pv

i j = −M , where pv
i j is the travel

time probability of a virtual vehicle, and M is a large positive
value. Therefore, the logarithm of new m × m travel time
probability matrix as in

A′
m×m =

 a11 . . . a1n −M · · · −M
...

. . .
...

...
. . .

...

am1 · · · amn −M · · · −M


m×m

(2)

When n > m > 0, the downstream vehicles are less than
upstream vehicles, we add (n − m)×n rows of virtual vehicles,
thus the logarithm of the new n × n travel time probability
matrix as in

A′
n×n =



a11 · · · a1n
...

. . .
...

am1 · · · amn
−M · · · −M

...
. . .

...

−M · · · −M


n×n

(3)
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Let q = max(m, n), then the objective function and con-
straints as in

max z′
=

q∑
i

q∑
j

xi j ai j

s. t.



q∑
i=1

xi j = 1

q∑
j=1

xi j = 1

xi j = 0 or 1.

(4)

Then the model becomes a linear integer optimization,
which can be easily solved. The constraints demonstrate that
an upstream vehicle only can match one downstream vehicle.
The matching matrix is as

X =

 x11 . . . x1q
...

. . .
...

xq1 · · · xqq


q×q

(5)

Then the upstream or downstream vehicles that matched
with virtual vehicles will be reset to unmatched data.

C. Matching Algorithm Framework

The proposed vehicle matching algorithm aims to address
unmatched vehicles caused by recognition errors or unrecog-
nized issues by maximizing travel time probability based on
ALPR data. The algorithm automatically calculates the travel
time probability under the different matching situations and
implements the best matching by taking advantage of plentiful
spatiotemporal information of ALPR data.

To achieve the above goals, our proposed framework
includes travel time distribution estimation, travel time prob-
ability computing, the travel time confidence interval and
the matching time window size calculating, restricted fuzzy
matching, and the optimization model by maximizing the
travel time probability, etc. The framework of the vehicle
matching algorithm is shown in Fig. 3.

D. Modules of Matching Algorithm

1) Travel Time Distribution Estimation: The travel time
distribution estimation requires extracting the travel time of
the road segment and ALPR data preprocessing. Specifically,
it includes precise matching of upstream and downstream
license plates of the target road section, travel time extraction,
and travel time outlier processing. The method of travel
time removing outliers is mature, and a statistical-based
approach [35], [36], [37] is adopted.

We construct the travel time distribution using kernel density
estimation [38]. Assuming n travel time sample point data
{τ1, τ2, . . . , τn} that belong to independent and identical dis-
tribution F , and its probability density function (PDF) is f .
Therefore, the estimated PDF f̂h is shown as in

f̂h (τ ) =
1

nh

n∑
i=1

K
(

τ − τi

h

)
(6)

Fig. 3. The framework of the vehicle matching algorithm. The framework
first uses the precise and restricted fuzzy matching method to obtain the
matched license plates, then establishes the travel time distribution model for
unmatched vehicles, and sets the matching time window size and confidence
interval; finally, a matching optimization model is established to maximize
travel time probability and the matching results are solved.

where K (·) is the kernel function, h > 0 is a smoothing
parameter announced bandwidth; τ is the travel time variable.
We choose the Gaussian kernel as the kernel function, scilicet
K (τ ) = ϕ(τ), where ϕ(τ) is the standard normal density
function, as in

K (τ ) =
1

√
2π

exp
(

−
1
2
τ 2

)
(7)

The two elements of kernel density estimation are the
selection of kernel functions and the calculation of bandwidth.
The method of bandwidth computing [39] for kernel density
estimation is as in

h =

(
4σ̂ 5

3n

) 1
5

≈ 1.06σ̂n
−1
5 (8)

where σ̂ is the standard deviation of the travel time sample, n
is the number of samples for travel time data.

Afterward, the travel time cumulative distribution function
(CDF) F (τ ) is calculated as in

F (τ ) =

τ∫
0

f̂h (τ )dτ =

τ∫
0

1
nh

n∑
i=1

K
(

τ − τi

h

)
dτ (9)

2) The Travel Time Probability Calculating: The travel time
probability is calculated by the estimated travel time CDF. The
probability calculation for travel time is as in

pi j = F
(
τi j

)
− F

(
τi j − 1t

)
(10)

where τi j is the travel time of the downstream i th vehicle
matching with the upstream j th vehicle, and pi j is the
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Fig. 4. Illustration of the downstream matching time window size calculation
considering the traffic signal control scheme. The red line indicates the red
light, and the green line means the green light.

probability of travel time. F
(
τi j

)
is the travel time CDF, 1t

is the timestamp accuracy for ALPR data, and 1t = 1s.
3) Travel Time Confidence Intervals Calculating: For the

travel time cumulative distribution function F , with a probabil-
ity p (0 ≤ p ≤ 1), the inverse cumulative distribution function
(ICDF) F−1 returns the travel time τ threshold as in

F−1 (p) = in f {τ ∈ R : F (τ ) ≥ p} (11)

Suppose that confidence level is β, and β = 1−α, then the
travel time CI (confidence interval) is calculated as

C I =

[
F−1

(α

2

)
, F−1

(
1 −

α

2

)]
(12)

where F−1 is the travel time ICDF, α is the significance level,
F−1 (

α
2

)
is lower limit of the travel time CI, and F−1 (

1 −
α
2

)
is upper limit of the travel time CI.

4) The Matching Time Window Size Calculating: The
matching time windows include the downstream and the
upstream matching time window.

At signal-controlled intersections, right turn movement vehi-
cles are generally not controlled by signals and right turn
movement vehicles also pass during red light. But the down-
stream left turn and through movement vehicles are passing
during the green light. Therefore, we consider two points
in cutting the downstream matching time window: first, the
cut matching time window contains at least one cycle of
green light time; second, the vehicles passing during the green
light are placed in the middle of the matching time window.
As shown in Fig. 4, the downstream matching time window
hd is determined by the start time td

start and end time td
end , and

hd is calculated as in

td
start = t turn

λ +
rλ

2
(13)

td
end = t turn

λ+1 +
rλ+1

2
(14)

hd
=

[
td
start , td

end

]
(15)

where t turn
λ is the moment the green light turns to the red light

at the λth traffic light cycle, rλ is the λth red light duration.
Therefore, the downstream matching time window demands
the traffic light timing scheme inference. In detail, please refer
to the traffic light timing inference module.

Fig. 5. Illustration of the upstream matching time window size calculation
considering the differences in travel time of different turning traffic flows.

To determine the upstream matching time window hu ,
we extract the timestamps and lane positions of down-
stream vehicles within the matching time window at
first. If n unmatched vehicles are found downstream,
we record the corresponding timestamp vector as T d

={
td(k)
i : i = 1, 2, . . . , n

}
, where td(k)

i represents the timestamp
of the i th downstream unmatched vehicle in the kth lane.

Second, besides the timestamps and the lane location of
unmatched vehicles in downstream, we use the estimated travel
time distribution to calculate hu . When the downstream vehicle
travels on different lanes, as shown in Fig. 5, the travel time
has lane heterogeneity, and the travel time of different lanes
doesn’t belong to the same distribution.

In the upstream matching time window, it is assumed
that m unmatched vehicles are found, and the corresponding
timestamp vector is T u

=

{
tu

j : j = 1, 2, . . . , m
}

, where tu
j is

the timestamp of the j th upstream unmatched vehicle.
The earliest and latest upstream time points are calculated as

follows by employing the above spatiotemporal information,
as in

tu
min = min

(
td(k)
i − F−1

d(k)

(
1 −

α

2

))
(16)

tu
max = max

(
td(k)
i − F−1

d(k)

(α

2

))
(17)

where td(k)
i is the timestamp of the ith downstream unmatched

vehicle in the kth lane, F−1
d(k) is the travel time ICDF of the

kth lane.
Therefore, the matching time window corresponding to the

upstream at the confidence level β, as in

hu
=

[
tu
min, tu

max
]

(18)

5) Restricted Fuzzy Matching Module: In China, a general
vehicle license plate consists of 7 letters of Chinese characters,
letters and numbers, such as the actual license plate number
in Fig. 6. After the license plate is photographed by the
camera, the license plate information can be obtained through
optical character recognition (OCR) technology and automat-
ically stored in a dedicated ALPR database. However, the
letters and numbers in these license plates may be identified
incorrectly, such as the letter ‘B’ and the number ‘8’ may be
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Fig. 6. Camera view of license plate recognition system and license plate
recognition results. In this case, the letter ‘G’ is incorrectly recognized as the
number ‘8’.

confused with each other. We classify this individual character
recognition error as the second type ALPR data recognition
result. In Fig. 6, the letter ‘G’ is incorrectly recognized as the
number ‘8’.

Aiming at this kind of limited character recognition error,
we design a restricted fuzzy matching algorithm, which can
match the license plates due to individual character recogni-
tion errors. The restricted fuzzy matching improves matching
accuracy based on the fuzzy matching of license plate char-
acters [40] by adding spatial and travel time constraints.

There are three matching conditions in the restricted fuzzy
matching algorithm:

a) The license plate data for matching has upstream and
downstream spatial constraints;

b) There is a travel time constraint between the time dif-
ference between upstream and downstream of the ALPR
data;

c) The number of the same characters is greater than a par-
ticular value after comparing the license plate characters
of upstream and downstream vehicles. The number of
characters on an ordinary vehicle license plate is 7, and
the number of characters on the license plate of a new
energy vehicle is 8. Through experiments, we determined
that when the same number of ordinary license plates is
greater than or equal to 5, and the same number of new
energy license plates is greater than or equal to 6, the
upstream and downstream license plates are matched.

The specific steps for limiting fuzzy matching are as follows:

a) Sorting the downstream ALPR data in ascending order in
the order of detection time;

b) Dividing the ALPR data into matched and unmatched;
c) Extracting a set of unmatched license plate data according

to the downstream matching time interval, which is
represented by a matrix as Dum

i ;
d) In the upstream unmatched ALPR data, find the data

within the travel time confidence interval, denoted by
U um

i ;
e) Comparing the characters of each license plate number

in U um
i and Dum

i one by one in the order of the license
plate characters, record the number of each pair of license
plates with the same characters in the same order, filter
out the license plates that meet the restricted conditions,
record the matching data, and update the unmatched data
set;

f) Extracting the next set of upstream data U um
i+1 and down-

stream data Dum
i+1 that meet the conditions and continue

to perform matching next window time.

Fig. 7. Illustration of signal timing inference based on the ALPR data. Each
point represents the moment when a car passes the stop line.

6) Traffic Signal Timing Inference Module: The traffic
signal timing inference can be transformed into a binary
classification problem by solving support vector machines
(SVM) [41]. In fact, the ALPR data are not designed for
the traffic signal control system, and the two systems don’t
connect directly. Especially when the traffic signal scheme is
inductive control, the signal cycle and the green light time are
real-time changes.

A typical signal control scheme has elements such as cycles,
green lights, and red lights. ALPR data contains location and
time information, which can divide the vehicle into green light
phase and red light phase at the moment of passage. As shown
in Fig. 7, vehicles are divided into green dots and red dots.
Using the SVM method, the moment of the green to red light
transition can be inferred (the split line in Fig. 7). Similarly, the
moment of each red to green light transition can be estimated.
In this way, we can solve the cycle duration of traffic signal
timing c, the green light duration g, the red light duration r ,
and the phase change moment t turn

λ .

IV. CASE STUDIES AND EXPERIMENTAL RESULTS

A. Data Survey

To verify the effectiveness of the proposed vehicle matching
algorithm under different lighting and weather conditions,
we obtained the ALPR data of the survey road in four
scenarios: sunny day (7:20- 10:30 am, December 30, 2020),
clear night (19:00- 20:00, December 30, 2020), rainy day
(8:00- 9:00 am, July 28, 2023) and rainy night (19:00- 20:00,
July 28, 2023). we also collected the ground truth data of
motor vehicles traveling on the actual road section by six high-
definition (HD) cameras in the same period.

The survey road section is southbound of Minhe Road, with
a length of about 327 meters. The upstream intersection is
Zhenning Road-Minhe Road, the downstream intersection is
Wenming Road-Minhe Road, and the middle entrance is the
east gate of a residential district.

The survey locations are shown in Fig. 8. We deployed
three cameras, two cameras, and one camera at the upstream
intersection, the downstream intersection, and the entrance of
the residential region in the middle, respectively. We record
the license plate and time stamp of each vehicle passing the
stop line on the upstream and downstream of the road. The
time of the cameras are calibrated to guarantee the uniformity.
We manually identified the vehicle video, then recorded the
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Fig. 8. Illustration of ALPR cameras in the case study and the HD cameras
used in the manual survey.

TABLE I
AUTOMATIC LICENSE PLATE RECOGNITION RESULTS

timestamp and license plate number when the vehicle passes
the stop line.

B. Data Quality Analysis

We manually identified the surveyed video data and count
the actual number of vehicles in each section. The actual traffic
flow of the survey period in the sunny day(7:20- 10:30 am,
December 30, 2020) is shown in Fig. 9. The quality analysis of
ALPR data is shown in Table I. In the same period, we counted
the total number of ALPR vehicles, the correct number of the
ALPR data, and the recognition accuracy.

We summarized the traffic volume data based on different
upstream and downstream flow directions in Table I. The
Traffic volume of the ALPR is obtained by statistically aggre-
gating the ALPR data. The ALPR data Recognition accuracy
is obtained by calculating the ratio of the correct recognition
number of vehicles to traffic volume of the ALPR.

Fig. 9. The channelization and traffic flow statistics in the morning peak
hours of sunny day.

TABLE II
LICENSE PLATE RECOGNITION ACCURACY UNDER DIFFERENT WEATHER

AND LIGHTING CONDITIONS

In Table I, the bold numbers representing extreme values of
recognition accuracy, the recognition accuracy of the upstream
through movement is the highest: 97.35%. The recognition
accuracy rate of upstream right turn movement is the lowest,
which is 60.33%. the Recognition accuracy of total movements
is 83.94%.

The captured images were under different lighting and
weather conditions as shown in Fig. 10. The image shows
that at night and in rainy conditions, the vehicle image,
especially the license plate area, can still be captured clearly.
we examined the accuracy of ALPR data under different
lighting and weather conditions. We then conducted manual
verifications to ensure that the recognized license plate num-
bers matched precisely with those in the images, allowing us to
determine recognition accuracy. The results are summarized in
Table II. Notably, the table illustrates that recognition accuracy
is affected by both rainy weather and low-light conditions at
night. However, even under these challenging conditions, the
minimum accuracy level remains above 75%.

C. Analysis of Travel Time Distribution Characteristics

Travel time distribution builds a foundation for the vehicle
matching algorithm. The manual survey gets the ground truth
data of travel time distribution.
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Fig. 10. The captured images under different light conditions and weather
conditions. Please note that the last digit of the license plate is hidden to
protect privacy.

Fig. 11. The CDF of travel time distribution for different movements
in different hours using kernel density estimation. The subgraphs (a) to
(c) represent the travel time distribution of left-turn movement in the three
hours from 7:30 to 10:30, and the subgraphs (d) to (f) represent the travel
time distribution of right-turn movement.

With the travel time of the ALPR data sampled from the
ground truth data, we further test whether the ALPR data
belongs to the same distribution as the actual data. We use
the 7:30 to 10:30 interval of survey data and divide each
hour’s data into an individual part. The original travel time data
contains outliers, such as part of vehicles exceeding the speed
limit or staying on the road too long. These vehicles lead to
the travel time being too small or too large. We estimate travel
time distribution by data after removing outliers. As Fig. 11
shows, the three sub-graphs in the upper row are the travel time
CDF of the downstream left turn movement in three periods.
The lower row sub-graphs represent the travel time CDF of
downstream right turn movement. In Fig. 11, the green line
stands for the actual travel time CDF, and the red line denotes
the estimated travel time CDF. The p-value on the upper
left corner of sub-graphs shows the result of the two-sample
Kolmogorov-Smirnov test. When the p-value is more than the
significance level, the estimated and the actual travel time
distributions belong to the same distribution. The test results
show that when the significance level is 0.05, the distribution
of the travel time sampled by ALPR data is consistent with
the actual travel time distribution.

We further study travel time characteristics and conclude
that the travel time has time-varying and lane heterogeneity in

TABLE III
TEST OF THE SPATIOTEMPORAL DYNAMICS OF TRAVEL TIME DISTRIBU-

TION

TABLE IV
COMPARISON OF MATCHING ALGORITHM RESULTS

OF SUNNY DAY SCENARIO

the urban signalized link. We test travel time features by two-
sample Kolmogorov-Smirnov test, and report H-values and
p-values. We set the significance level of the test as 0.05.
When the H-value equals 0, the two groups of data compared
are from the same distribution. When the H-value equals 1,
we reject the null hypothesis, and the two groups of travel
time data belong to different distributions. The test results
of the dynamic spatiotemporal characteristics of travel time
distribution is shown in Table III. Where ‘TT’ represents the
travel time data, ‘H1’ stands for the time interval for 7:30-8:30,
‘H2’ stands for the time interval of 8:30-9:30, ‘H3’ stands
for the time interval of 9:30-10:30, ‘L’ denotes the left turn
movement, ‘R’ means the right turn movement, and p-values
marked with ∗ indicate significant differences.

In Table III, the time-varying feature test shows that the peak
and off-peak travel time data are different distributions at the
downstream left turn movement. However, the data on right
turn movement didn’t show the same time-varying feature.
Besides, the periods of H2 and H3 are all during the off-peak
time, and the travel time data of left or right turn movement
during the off-peak period are the same distribution.

D. Benchmark Algorithms

1) Precise matching algorithm: The precise matching
algorithm requires the license plates of upstream and
downstream to be consistent. This algorithm is the most
commonly used method for license plate matching and is
applied in many traffic applications, such as travel time
extraction, speed estimation [3], [4], etc.
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TABLE V
COMPARISON OF MATCHING ALGORITHM RESULTS OF RAINY NIGHT

SCENARIO

2) Fuzzy matching algorithm: In some ALPR data, recogni-
tion errors only occur in a few characters, but the other
characters are correct. The fuzzy matching [40] addressed
this part of the wrong license plate.

3) Box-Grained Reranking Matching [42]: This model deals
with Multi-Camera Multi-Target tracking problems only
by the appearance features of vehicles. The vehicle detec-
tion and ReID feature extraction modules are employed
to locate all vehicles and extract the appearance features
for all cameras and then the K-reciprocal nearest neigh-
bors algorithm is used to match vehicles. The pretrain
HRNet48 model in [42] is used as backbone for ReID
training on our dataset.

4) BOE model [43]: this is another computer vision solution
for vehicle matching based on the appearance features of
vehicles in AI City Challenge 2022.

E. Result Analysis

In the proposed vehicle matching algorithm, we need to set
parameters in advance: the matching time window size and
the significance level of travel time distribution. In Table IV,
the time window is set to 1 cycle of traffic control signal,
and the significance level is set to 0.05. The results of
sunny day is shown in TABLE IV, the proposed vehicle
matching algorithm by maximizing travel time probability
achieves the best cumulative matching accuracy: 95.16%. Our
proposed method outperforms the compared methods in terms
of matching accuracy and unmatched rate while maintaining
a competitive matching error rate. The reidentification method
[53-54] uses vehicle features only to match the upstream and
downstream vehicles based on the similarity of the vehicle
appearance features and achieve about 75% matching accu-
racy. The main reason for the low matching rate is that some
vehicles in the traffic flow have the same or similar appearance.

To compare the results of this method and the bench-
mark methods under poor lighting and weather conditions,
we selected the rainy night scenario (19:00- 20:00, July
28, 2023) for analysis. The results in TABLE V show that
compared with the sunny day scenario, under severe lighting
and weather conditions, the matching accuracy of all methods
decreases, and the matching accuracy error increases. Our
proposed method is superior to all comparative methods in
terms of all indicators, and the matching accuracy remains
above 90%. The fuzzy matching method has the smallest
decrease, which is due to the increased probability of indi-

Fig. 12. Boxplots of evaluations index of proposed method in sunny day
under different matching windows size.

vidual characters of the license plate being misrecognized
under poor lighting conditions, but has less impact on fuzzy
matching. The visual method based on appearance features has
a larger decrease. This is due to the greater impact of rainy
days and reflective conditions on appearance, which can be
seen in Fig. 10.

F. Parameters Sensitivity Analysis

We performed parametric sensitivity analyses on time win-
dow size and significance level in the sunny day scenario. First,
we fix the significance level equal to 0.01. Second, we calcu-
late the effects of the different time window sizes on the three
evaluations index: matching accuracy, matching error rate, and
unmatched rate. We evaluate the above three indicators when
a matching time window contains 1 to 10 cycles. As shown
in Fig. 12(a), when a longer matching time window is used,
the median and the variance of matching accuracy show a
downward trend. In Fig. 12(b), as the matching time window
size increases, the median of the matching error rate increases,
but the variance of the matching error rate decreases.

In Fig. 13, we fix the matching time window size that
includes one signal cycle. The upstream matching window
sizes are calculated by (16) and (17), which depend on travel
time distribution. As shown in Fig.11, the 90% to 99% values
of the travel time cumulative distributions are close, leading
to the upstream matching time window intervals are change
little. From the results, we can conclude that the effects of
different significance levels on the three evaluation indicators
are insignificant.
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Fig. 13. Evaluations index under different significance levels setting.
The results show that the matching accuracy, matching error rate, and
non-matching rate of this method do not change significantly when setting
different travel time confidence levels, indicating robustness.

Fig. 14. Evaluations index under different combinations of significance level
and matching window size.

We show the changes in the evaluation indicators for
different parameter combinations in Fig. 14. We selected the
matching time windows to be 1 to 10 signal cycles and set
the significance levels to be 0.01 to 0.1, respectively. The
results show that the matching accuracy of the algorithm is

higher than 94.91% under different parameter combinations.
The accuracy is relatively stable and at a high level. But the
significance level has no significant impact on the evaluation
index. In Fig. 14, as the bigger matching time window size is
adopted, the matching error rate increases, but the matching
accuracy and the unmatched rate decrease.

V. CONCLUSION

Through investigation analysis and experimental verifica-
tion, we can draw these conclusions:

1) The travel time obtained from the ALPR data belongs to
the same distribution as the ground truth data, and the
travel time reflects time-varying and lane heterogeneity.

2) The proposed vehicle matching algorithm improves the
matching accuracy based on the maximum travel time
probability. Compared with the precise license plate
matching, the cumulative matching accuracy is increased
by 37.45%.

3) The results of parameter sensitivity analysis on the time
window size and significance level show that under
different parameter combinations, the matching accu-
racy of the algorithm is relatively stable and is at a
high level, not lower than 94.91%. We conclude that
the proposed vehicle matching algorithm is suitable for
different matching time windows and different saliency
levels. The proposed vehicle matching algorithm provides
a good foundation for subsequent traffic information
services. Different significance levels have no significant
effect on the three evaluation indicators. It will match
more upstream and downstream vehicles with the bigger
matching time window, but the matching error rate will
increase.

In summary, the new method proposed in this paper may
provide advantages for future applications. The ALPR data
with a high sampling rate and widespread coverage of road
networks, these characteristics are proper for serving origin
and destination demand estimation, link vehicle count esti-
mation, travel time estimation, and queue length estimation.
Aiming at the recognition errors and non-recognition issues
of ALPR data, the vehicle matching algorithm based on the
maximum travel time probability improves the cumulative
matching accuracy of upstream and downstream vehicles.
The new model does have limitations. This method is only
suitable for road sections where license plate recognition can
be achieved on both upstream and downstream sections, which
limits the scope of this method. In the future, we will further
estimate the link dynamic vehicle count with the vehicle
matching algorithm to optimize the network-wide traffic signal
light control.
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